Exploring Hidden Dimensions in Parallelizing Convolutional Neural Networks
نویسندگان
چکیده
The past few years have witnessed growth in the size and computational requirements for training deep convolutional neural networks. Current approaches parallelize the training process onto multiple devices by applying a single parallelization strategy (e.g., data or model parallelism) to all layers in a network. Although easy to reason about, this design results in suboptimal runtime performance in large-scale distributed training, since different layers in a network may prefer different parallelization strategies. In this paper, we propose layer-wise parallelism that allows each layer in a network to use an individual parallelization strategy. We jointly optimize how each layer is parallelized by solving a graph search problem. Our experiments show that layer-wise parallelism outperforms current parallelization approaches by increasing training speed, reducing communication costs, achieving better scalability to multiple GPUs, while maintaining the same network accuracy.
منابع مشابه
One weird trick for parallelizing convolutional neural networks
I present a new way to parallelize the training of convolutional neural networks across multiple GPUs. The method scales significantly better than all alternatives when applied to modern convolutional neural
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملExploring the Design Space of Deep Convolutional Neural Networks at Large Scale
Exploring the Design Space of Deep Convolutional Neural Networks at Large Scale
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.04924 شماره
صفحات -
تاریخ انتشار 2018